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ABSTRACT
In processing large volumes of speech and language data, we

are often interested in the distribution of languages, speakers, topics,
etc. For large data sets, these distributions are typically estimated at
a given point in time using pattern classification technology. Such
estimates can be highly biased, especially for rare classes. While
these biases have been addressed in some applications, they have
thus far been ignored in the speech and language literature. This ne-
glect causes significant error for low-frequency classes. Correcting
this biased distribution involves exploiting uncertain knowledge of
the classifier error patterns. The Metropolis-Hastings algorithm al-
lows us to construct a Bayes estimator for the true class proportions.
We experimentally evaluate this algorithm for a speaker recognition
task. In this experiment, the Bayes estimator reduces maximum
RMSE by a factor of five. Performance is furthermore more con-
sistent, with range of RMSE reduced by a factor of 4.

Index Terms— knowledge acquisition, Monte Carlo methods,
speech processing

1. INTRODUCTION

There is increasing interest in characterizing links in a communi-
cation network, not simply in terms of message count but by con-
tent. For example, what proportion of internet traffic is peer-to-peer?
There may be little or no prior knowledge. For communication be-
tween humans, characterization can involve any of the standard tasks
in language processing. We might assign a categorical label (e.g.
language, speaker or topic) to linguistic content encoded in audio,
text or document images, then focus on the distribution over these
categories. Histograms of these distributions provide useful sum-
mary statistics to help humans cope with information overload [1].

Automated classifiers have many uses, but their output is typi-
cally biased due to classification errors. Proportional bias increases
as the frequency of a class decreases. For example, consider some
binary task with 5% false alarm rate and negligible missed detec-
tions. If 20% of the data is truly from the target class, around 24%
of the data will be hypothesized as such by the classifier due to false
alarms. This is incorrect, but perhaps still useful. However, for a true
value of 0.01%, the expected 5% hypothesized proportion is wrong
by orders of magnitude. This large proportional bias is unsatisfac-
tory, especially in applications where rare events are of interest.

Given the classifier error rates, it is straightforward to estimate
the most likely class proportions via the E-M algorithm. These can
be estimated from some sample set with manual annotation. How-
ever, estimates based upon finite data have some degree of uncer-
tainty. Optimal decisions can require understanding of variance —
the most likely target class proportion may be 20%, but how plausi-
ble is 19%, or 10%? This is a well understood problem in statistics,
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given the assumption that the test data is drawn from the same popu-
lation as the training data [2]. To provide variance information rather
than a simple point estimate requires a different technical approach.

A hierarchical Bayes model for the true class proportions can
incorporate error rate uncertainty. The Metropolis-Hastings (M-H)
algorithm [3] allows us to construct the posterior distribution of true
class proportions. The posterior mean provides a Bayes estimate of
the class proportions, while posterior variance provides confidence
bounds on the estimated proportion.

2. RELATED RESEARCH

Issues of data summarization when using a classifier have not been
a traditional focus of Human Language Technology (HLT) research.
An appropriate model for classifier errors is presented in [2]; this
work however does not address the issue of estimation based upon
uncertain error rates. The bias inherent in hard classifier output has
been ignored by the speech and language processing community
(thus such works such as [4] analyze output label rather than true
class proportions). The work [5] also seeks a methodology that is
valid for all possible class proportions; it further provides an HLT
engineer’s sketch of Bayesian decision theory. Their interest how-
ever is on calibration of score likelihoods conditional on class, anal-
ogous to our confusion matrix, rather than updating the hypothesis
prior distribution. Natural language processing uses complex classi-
fiers and machine learning techniques, but corpus summary statistics
have not been a primary concern.

Research areas involving high-speed high-volume data streams
(such as internet traffic) focus more on issues of speed and scalabil-
ity. Recently there has been convergence with HLT. Content mining
techniques are increasingly used to monitor networks [6], while there
is ongoing research on fast language processing scalable to massive
data streams. [7] describes one application in (text-based) language
and topic identification. As high-volume data processing incorpo-
rates imperfect classifiers, classifier bias can seriously impact data
analysis.

The medical literature recognizes the issue of classification bias;
some authors use confusion matrix inversion, assuming known error
rates [8]. A few works note that this is unrealistic [9]. In particular,
the technical approach of [10] is very similar to ours. Their paper
considers only two classes and relies on a Gibbs sampling scheme
dependent on conjugate priors, but is readily extensible to more gen-
eral classification problems. These results seem to be unknown out-
side of the epidemiology literature.

Our technical problem requires deducing true class proportions
from the classifier’s hypothesized proportions and estimated error
patterns. From this perspective our solution simply adapts standard
Bayesian techniques to a particular mixture problem. The justifi-
cation for using Markov Chain Monte Carlo (MCMC) numerical
estimation is well-understood [3], but the practice involves some
art [11] [12].
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3. ESTIMATING CLASS PROPORTIONS

3.1. Introduction

We measure estimator performance via mean squared error (MSE).
In this section, we show that hypothesized class proportions act as
a shrinkage estimator towards the fixed eigenvector of the classifier
error rate matrix. This introduces uncontrolled bias and lack of pre-
dictability into the MSE.

In incorporating a model of error rates, the Bayes estimator de-
scribed in this paper gains some desirable statistical properties. It
is consistent in the sense that given unlimited data it must converge
to the truth. It is admissible (no strictly lower risk estimator exists)
since it is Bayesian for a particular prior [13]. By construction it
has minimum expected squared error loss under explicit prior beliefs
about the parameters.

3.2. The Distribution of Classifier Hypotheses

Denote by x the value of the true class label for some observation,
and by y the hypothesized class label from the classifier output. As-
sume multinomial samples x and y with associated class probability
vectors V and W respectively, where V ≡ {vi = P (x = i)} and
W ≡ {wi = P (y = i)}. Improved classifier performance brings
W closer to true V , but accurate estimation of V is possible for im-
perfect classifiers given accurate knowledge of classifier error rates.

For a given data set and classifier we have a model with class-
conditional error probabilities

cij = P (y = i |x = j)

The cij are independent of the (unknown) true distribution of x.
Given probability vectors V for the true-class distribution and W
for the hypothesized-class distribution, this leads to the multinomial
parameter equation

W = CV (1)

The matrix C has an eigenvalue 1, thus at least one ‘fixed’ eigen-
vector VF such that CVF = VF . This VF is unique so long as
the Markov process defined by transitions C is ergodic (irreducible
with recurrent aperiodic states). A sufficient (though not necessary)
condition is if no entries of C are zero. In such a case, VF is the
unique attractor for all probability vectors V under the action of C:
limn→∞ CnV = VF . This creates the bias in hypothesized ver-
sus true class proportions — other vectors V are drawn towards VF .
Thus, W = CV differs from V except at VF .

Given a set Y of observed classifier output, we denote by y(i)
the classifier hypothesis for observation i, where y(i) ∈ {1, K} for
a classifier with K categories. Denote the number of observations in
Y by NY . We abuse notation and let Y further denote the vector of
hypothesized class counts, so Y ∼ Multi(NY , W ). Given Y , we

have Ŵ = Y/NY the relative frequency estimator for W . Thus Ŵ

is a random variable, while Ŵ (Y ) is a fixed value. The expected

MSE of Ŵ as an estimator of true proportions V has the classic
decomposition:

E
h
(Ŵ − V )2

i
= var(Ŵ ) +

h
E(Ŵ − V )

i2

(2)

Consider the 2-class case. When the number of observations
NY is large, then var(ŵ1) is small, squared bias dominates the MSE,
and the root mean squared error (RMSE) of w1 ≈ |E(w1) − v1| .
For smaller NY , var(ŵ1) contributes to RMSE. Figure 1 shows an
example. Estimator ŵ1 suffers from uncontrolled bias due to the

Fig. 1. RMSE of ŵ1 for 10% EER classifier, high and low variance.

shrinkage of V towards VF . The shrinkage depends on both C and
unknown V , so RMSE cannot be predicted without an explicit model
for C. Compensating for the bias by estimating C provides a more
predictable RMSE.

3.3. Hierarchical Bayes Model

Estimation of error rates C is typically done from some manually
labeled corpus L, with lij the number of observations with true class
j and hypothesized class i. The distribution of the parameter V de-
pends on the distributions of W and C, which in turn depend on L
and Y . A hierarchical Bayes model can exploit priors not only on
the parameter of interest, but on the other parameters on which its
distribution depends.

We model true class and class-conditional output labels as multi-
nomial random variables. Flat priors allow us to model P (W |Y ) as
a Dirichlet and P (C|L) as a hyper-Dirichlet distribution. Joint dis-
tribution P (C, W |L, Y ) is more complicated in that the domain of
W depends on C. Changing coordinates to P (C, V |L, Y ) elimi-
nates that issue, but data Y provides information on CV rather than
directly on V . Thus we construct posterior P (C, V |L, Y ) via ran-
dom sampling.

3.4. Metropolis-Hastings Estimation of V

Our goal is to estimate the distribution P (V |L, Y ), where V is the
vector of true class proportions given data L and Y . We have no
analytic solution for P (V |L, Y ), but do have:

P (C, V |L, Y ) ∝ P0(C, V )P (Y |W = CV )P (L|C)

for prior P0(C, V ) by Bayes Rule. We generate random samples of
C and V according to probabilities P (C|V, L, Y ) and P (V |C, Y ).
We recover P (V |L, Y ) by projecting onto the marginal distribution.

The M-H algorithm provides a Monte Carlo method for gener-
ating samples that are provable convergent to a target distribution.
Denote some parameter space by X and the (computable) probabil-
ity distribution by q(x). M-H performs a random walk in X via a
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transition kernel π(x, x′). The transition kernel defines a Markov
chain, which under suitable conditions (i.e. ergodicity) is guaran-
teed to converge in probability to the target distribution q(x). See [3]
and [14] for more details.

We generate a correlated sample of size T as follows:

1. Set initial C0 = Ĉ(L), V0 = C−1
0 Ŵ (Y ).

2. For t in 1 to T:

(a) Select candidate C′ via independent transition kernel
πC = P (C′|L).
Define W ′

C = C′Vt−1 and Wc,t−1 = Ct−1Vt−1

Thus αC = P (W ′
C |Y, L)/P (Wc,t−1|Y, L)

Accept Ct = C′ with probability min(αC , 1).

(b) Select candidate V ′ via the transition πV .
Define W ′

V = CtV
′ and Wv,t−1 = CtVt−1

Thus αV = P (W ′
V |Y, L)/P (Wv,t−1|Y, L)

Accept Vt = V ′ with probability min(αV , 1).

This random walk in (C, V ) will converge to P (C, V |Y, L). Se-
quence Vt is guaranteed to converge to the marginal distribution of
interest, P (V |Y, L). Given K classes this is O(K2T ); the number
of classes that can be considered in practice is limited by the amount
of labeled data L to estimate C rather than algorithmic complexity.

4. EXPERIMENTAL EVALUATION ON SPEAKER ID

4.1. Introduction

In this section, we experimentally evaluate the M-H algorithm on a
target/non-target speaker identification (SID) task derived from the
Switchboard corpus [15]. We will construct this task by randomly
selecting 100 speakers (out of nearly 500) to constitute a modeled
target set, with the remaining open-set (unmodeled) denoted as non-
targets.

We evaluate the RMSE as a function of true target proportion v1,
comparing the RMSE curves for W ∗ and V ∗. Randomized train-
ing (L) and test (Y ) sets are generated for values of v1 in the inter-
val [0, 1]. Using the algorithm of the previous section, we estimate
P (V |L, Y ) for each data set and compute the RMSE as a function
of v1. We then compare the RMSE of the hypothesized proportion
(w∗

1 ), and of the Bayes estimated proportion (v∗
1 ), as functions of the

unknown true v1.

4.2. Data and Experimental Set-up

Andrews and Hernandez [16] provided SID scores for a subset of
Switchboard, using the algorithm from [17]. In particular, there are
4837 different voice cuts representing 483 different speakers. To
create a target set, 100 speakers were selected at random. To pro-
vide a task with non-negligible error rate, only two trained models
were retained for each of the target speakers (i.e. 200 models). No
individual models were retained from the open-set (non-targets). We
defined a simple binary classifier with parameter T as follows. For
each voice cut:

1. Find model scores {si} for the target speakers (200 scores),

2. If max(si) > T then classify the voice-cut as “Target”, else
classify as “Non-target.”

The resulting classification task has an equal error rate around 5%.
We estimate RMSE(v∗

1 ) over various values of v1 as follows.
Generate random partitions of the 5K voice cuts into training and
test sets. Denote the training sets by Li, where the number of voice

Fig. 2. Operating point: c12 = c21 = 0.053

cuts NL is constant (4111). Denote the test sets by Yi, where the
number of voice cuts NY is also constant (726).

The value of ‘true target proportion’ vi1 is controlled by con-
strained generation of the Yi. Denote by Xi1 the number of true
target cuts in the data set Yi, where the true proportion of target
speakers in that data set is given by vi1 = Xi1/NY . Denote by
wi1 = Yi1/NY the hypothesized target proportion in Yi.

For each partition we estimate P (V |Y, L) via M-H. Denote by
Nv1 the number of partitions (Li, Yi) with common v1 (100 in our
experiments). The true vi1 is known for each partition. This provides
an empirical measure for the RMSE of an estimator at fixed true
target proportion: RMSE(v∗

1 |v1) = (
P

vi1=v1(v
∗
i1 − v1)

2/Nv1)
1/2

and similarly for RMSE(w∗
1 |v1).

We present RMSE(v∗
1 |v1) and RMSE(w∗

1 |v1), based upon 100
random partitions generated for every (approximate) percentile value
of v1. Figure 2 shows the two curves at the EER operating point
c12 = c21 = 0.05. Observe that RMSE(w∗

1 ) is quite unpredictable,
ranging between 0.01 and 0.05 depending on the true value of v1.
RMSE(v∗

1 ) is both significantly lower and more predictable. The
maximum of RMSE(v∗

1 ) is a factor of 5 smaller than the maximum of
RMSE(w∗

1 ). Furthermore, measuring the predictability of the errors
by range, then 0.007 < RMSE(v∗

1) < 0.017 at the equal operating
point, while 0.006 < RMSE(w∗

1) < 0.053. This gives a range of
0.01 versus 0.047, or a 75% relative reduction in the range of v∗

1 .
Figure 3 shows the estimator RMSE curves when the false alarm
rate (c12) is 2% and the missed detection rate (c21) is 9%.

4.3. Value Estimation on Streams

One important problem is to identify which of several data streams
has the greatest proportion of some target class. If all streams are
have the same classifier error, the best source of the target class is
the one with the highest observed w∗

1 . In practice however streams
often differ, for example due to noise and channel effects. In these
cases hypothesized classes W alone can lead to consistently poor
decisions.

We generate two data sets with different non-target distributions
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Fig. 3. Operating point: c12 = 0.024, c21 = 0.088

via biased sampling. Rather than random allocation, we assign a
fixed proportion of those points on which the classifier fails to sub-
sets of the data. In particular, we divide the Switchboard data into
two halves S1 and S2, but allocate exactly one-third of classifier er-
rors to S1. This creates overall error rates of 3.6% and 7.1% on S1

and S2 respectively.

We partition each Si into equal pieces Li and Yi. Classifier
performance C is modeled independently on each Li to allow for
changes. We examine the results of estimation on 1000 partitions
(L1, L2, Y1, Y2) for various fixed values of true target proportion v1

on Y1 and Y2.

If we set target proportions v1 = 0.03 in Y1 and v1 = 0.01
in Y2, the mean value of w∗

1 is 0.064 in Y1 and 0.080 in Y2. The
mean value of v∗

1 is 0.031 in Y1 and 0.015 in Y2. Bayes estimation
decides Y1 is the richer source of target voice cuts 87.7% of the time;
hypothesized classes select it only 0.6% of the time.

With target proportions v1 = 0.047 in Y1 and v1 = 0.01 in Y2,
the mean value of w∗

1 is 0.079 in each; true target difference exactly
matches the difference in bias. Means for v∗

1 are 0.047 and 0.015
respectively. Bayes estimation selects the richer source 99.2% of the
time. Hypothesized classes have essentially random performance
(correct 47.2% of the time). Only as the difference in true class pro-
portions increases beyond 3.5%, do hypothesized classes detect the
difference. We see that given rare target classes, a difference in false
alarm rate can overwhelm the difference in true target proportion.

5. CONCLUSIONS

This paper has addressed the problem of estimating class proportions
based on the output of an automated pattern classification system, for
example language, speaker or topic identification. We described an
hierarchical Bayes model for the true class distribution, which allows
construction of a Bayes estimator for the true class proportion.

This algorithm was experimentally evaluated on a binary SID
task derived from the Switchboard corpus. This experiment demon-
strated that the Bayes estimator of target proportion is far superior
to the hypothesized target proportion from the classifier. The maxi-

mum RMSE was reduced by a factor of 5, and the range in RMSE
(as a measure of variability) is reduced by a factor of 4.
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